A Binarisation Approach to Non-Convex Quadratically Constrained Quadratic Programs

نویسندگان

  • Laura Galli
  • Adam N. Letchford
چکیده

The global optimisation of non-convex quadratically constrained quadratic programs is a notoriously difficult problem, being not only NP-hard in the strong sense, but also very difficult in practice. We present a new heuristic approach to this problem, which enables one to obtain solutions of good quality in reasonable computing times. The heuristic consists of four phases: binarisation, convexification, branchand-bound and local optimisation. Computational results, on boxconstrained and point packing instances, are encouraging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A compact variant of the QCR method for quadratically constrained quadratic 0-1 programs

Quadratic Convex Reformulation (QCR) is a technique that was originally proposed for quadratic 0-1 programs, and then extended to various other problems. It is used to convert non-convex instances into convex ones, in such a way that the bound obtained by solving the continuous relaxation of the reformulated instance is as strong as possible. In this paper, we focus on the case of quadratically...

متن کامل

SDO relaxation approach to fractional quadratic minimization with one quadratic constraint

In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...

متن کامل

A semidefinite relaxation scheme for quadratically constrained

  Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...

متن کامل

Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-a...

متن کامل

Disjunctive Cuts for Non-convex Mixed Integer Quadratically Constrained Programs

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and nonconvex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the liftand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015